Скублов Г.Т., Потапович Е.М., Боричева И.К., Павшуков В.В.

О необычном химическом составе челябинскитовой Царь-сферулы (по данным микрозондового анализа).

Skublov G.T., Potapovich E.M., Boricheva I.K., Pavschukov V.V.

About the unusual chemical composition Cheljabinskites King-spherule (according to microprobe analysis).

1. ПРЕДИСЛОВИЕ	cmp 1
2. ВВЕДЕНИЕ	2
3. МЕТОДИКА РАБОТ	4
3.1. Фотографии и описание Царь-сферулы	4
3.2. Микрозондовое исследование Царь-сферулы	5
3.3. Статистическая обработка данных и их интерпретация	13
3.4. ГУГЛ-поиск природных аналогов Царь-сферулы	15
4. РЕЗУЛЬТАТЫ РАБОТ	15
4.1. Сравнительный анализ геологической и геохимической моделей Царь-сферулы	15
4.2. Ассоциации химических элементов	18
4.3. Главнейший биогеохимический тренд	18
5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ	18
5.1. УФО-геологическая модель образования челябинскитовой Царь-сферулы	18
5.2. Сравнительный геохимический анализ Царь-сферулы, Земной коры, био-объектов и человека	19
5.3. О возможных аналогах челябинскитовой Царь-сферулы	21.
6. ЗАКЛЮЧЕНИЕ	24

1. ПРЕДИСЛОВИЕ.

The article is devoted to a completely new natural object Cheljabinskites (<u>http://www.hodka.net/sk31.pdf</u>), which was formed on February 15, 2013 during the fall Chelyabinsk meteorite and presents the microspherules, ash facies and melt formations. For the first time on the wave micro-probe analyzer studied largest spherule with a diameter of 4.6 mm (King-Spherule). It is established that the elemental composition similar to that of the Human immune system. Suggested that the King-spherule is a relic of a large UFO-plasmoid.

Статья посвящена новому природному объекту – челябинскитам (<u>http://www.hodka.net/sk30.pdf</u>), которые образовались 15 февраля 2013 г. во время падения Челябинского метеорита и представлены микросферулами, пепловыми фациями и расплавными образованиями. Впервые на волновом микроанализаторе изучена крупная сферула с поперечником 4,6 мм (ЦАРЬ-сферула). Установлено, что элементный состав её близок к составу иммунной системы Человека. Высказано предположение, что Царь-сферула является реликтом крупного НЛО-плазмоида.

2. ВВЕДЕНИЕ.

15 февраля 2013 г., после падения Челябинского метеорита (ЧМ), Е.М.Потапович (ЕМП), находясь в Челябинске, в эпицентре метеоритно-тектоно-сейсмической активности, - в слое катастрофного снега нашла необычные микросферулы и единичные крупные сферулы размером до 4,6 мм. Кроме того, на крыше приусадебной теплицы ЕМП были обнаружены многочисленные пепловые частицы, а на стеклах теплицы – расплавные образования неизвестного происхождения. Было высказано предположение, что образование сферул, пепловых частиц и расплавных пятен может быть связано с падением ЧМ, тем более что при падении метеорита ЕМП лично наблюдала повышенную НЛО-плазмоидную активность. 21 февраля 2013 г. ЕМП через Фейсбук познакомилась с Г.Т.Скубловым (ГТС), благодаря его фото-альбому «Сиверский феномен». Далее начался этап совместного с ГТС изучения необычных образований, названных впоследствии челябинскитами. Предварительные результаты этих исследований частично опубликованы (см. <u>http://www.hodka.net/sk30.pdf</u>). Они были положены в основу нашего доклада в МГУ на семинаре В.Л.Сывороткина 2 февраля 2014 г.

Всестороннее обсуждение результатов изучения челябинскитов состоялось в С. Петербурге 3 марта 2014 г. на заседании Российского минералогического общества (<u>http://www.hodka.net/sk32.pdf</u>, cтр. 2-13). Кроме того, ГТС в двух дополнительных содокладах проинформировал коллег о результатах своего многолетнего изучения НЛОплазмоидов (там же, стр. 14-19) и кратко рассказал о развиваемой им гипотезе возможного участия НЛО в судьбе ЧМ (стр. 20-26). После этого состоялась оживленная дискуссия (стр. 27-30), видео-запись которой (<u>http://www.youtube.com/watch?v=TJAU66JZyaQ</u>) за 2 месяца собрала более 300 просмотров. Материалы Презентации в редуцированном варианте опубликованы на сайте РМО (там же, стр. 31-32).

Основные результаты исследований. А. Челябинскиты – новый тип природных образований. 15 февраля 2013г. при падении и вспышке Челябинского метеорита в течение максимум одной минуты сформировались необычные существенно-железистые и силикатно-железистые новообразования, которые описаны нами как челябинскиты 1 типа (микросферулы), 2 типа (пепловые фации) и 3 типа (расплавные образования). Они резко различаются между собой по морфологическим признакам, но обнаруживают удивительное сходство по составу. Челябинскиты 1 и 3 типов обнаружены только в пределах г. Челябинска, в районе сейсмотектонической активности при взрыве ЧМ.

Б. Микросферулы - челябинскиты 1 типа. Представлены черными и буровато-коричневыми изометричными сферулами размером от 50 до 800 микрон (среднее – 100, максимум 4600 микрон). Выделено 4 подтипа – закрытые полые, полузакрытые подковообразные, открытые с миароловыми пустотами, открытые со следами выброса газонасыщенного аэро-флюидолита. Отмечены многочисленные ксеногенные обломки гранитов, гнейсов и их минералов. Состав микросферул варьирует от самородного железа до иоцита-вюстита (?) и маггемита (?). В газонасыщенных сферулах устанавливаются повышенные концентрации С, Р, S, Cl и других элементов. **В. Пепловые фации - челябинскиты 2 типа.** Представлены различной формы обломками черного цвета размером от 100 до 700 микрон. Выделяются три подтипа – газонасыщеннй аэро-флюидолит, перемешанный с продуктами взрывной фракции микросферул (**a**); массивный флюидолит со следами течения и дифференциацией по степени насыщенности углеродом и кислородом (**б**); микробрекчиевый флюидолит с обломками самородного железа и других минералов (**в**).

Г. Расплавные образования - челябинскиты 3 типа. Пока обнаружены только на одном приусадебном участке в городе Челябинске. Здесь на стеклах теплицы отмечаются многочисленные расплавные пятна размером от 100 до 2500 микрон (среднее – 700 мк). Форма их предельно разнообразная – кольцевая, линейная, пятнистая, струйчатая, сфероидная и др. Глубина проплавления стекла составляет 50 – 400 микрон. По составу челябинскиты 3 типа разделяются на два подтипа – существенно железистые и силикатножелезистые (a); железисто-углеродистые флюидонасыщенные, с C, P. S, Cl и с переходами в органо-минеральные соединения (б). Тепличные стекла существенно меняют свой состав при воздействии расплавных челябинскитов.

Д. Геохимические типы челябинскитов, ассоциации химических элементов и сопутствующие минералы. Все три морфологических типа челябинскитов характеризуются однонаправленной тенденцией смены восстановительных условий на окислительные в процессе их формирования. Данный признак взят за основу при выделении их геохимических типов. В челябинскитах выделено три ассоциации химических элементов: 1 – Fe, Mn, Ti, Ni, Cu; 2 – Si, Al, Ca, Na; 3 – C, P, S, Cl, N, K, Mg, V. Среди сопутствующих минералов преобладают кварц, полевые шпаты и слюды. Редкие минералы – самородный кремний и углеродистый аналог шрейберзита (?).

Е. Генетические модели челябинскитов. Наиболее вероятными моделями формирования челябинскитов можно считать метеоритную, крипто-вулканическую и УФО-геологическую. Выдвигается тезис о полигенности образования челябинскитов. Подчеркивается, что УФО-геологическая модель может оказаться конструктивной при решении вопроса о происхождении микросферул и расплавных фаций челябинскитов.

Ж. Задачи дальнейших исследований. Необходимо провести всестороннее изучение челябинскитов. Среди главнейших теоретических вопросов следует обратить внимание на предполагаемую нами связь в триаде «Челябинскиты – НЛО – Холодный ядерный синтез (ХЯС)». Эта проблема, судя по материалам обзора (<u>http://www.unconv-science.org/n1/parkhomov/</u>) и теоретической статьи о ХЯС ((<u>http://liga-ivanovo.narod.ru/starov.htm</u>), заслуживает особого внимания, так как при холодном ядерном синтезе образуются НЛО-плазмоиды (<u>http://forum.cnews.ru/lofiversion/index.php/t68570-5700.html</u>), а состав получаемого при ХЯС материала ((<u>http://podelise.ru:81/docs/13803/index-7277-1.html?page=3</u>) почти полностью соответствует составу челябинскитов.

3. Основной вывод. Челябинский метеорит – космический объект внеземного (Extraterrestial) происхождения; челябинскиты – продукт земных (Terrestial) процессов.

Полученные результаты свидетельствуют о необходимости дальнейшего изучения челябинскитов. Прежде всего это касается наиболее крупной сферулы размером 4,6 мм, которая была названа нами ЦАРЬ-сферулой. Было решено провести микрозондовые исследования в три этапа: 1 – предварительное изучение в Лаборатории-1 участка поверхности сферулы, обогащенного углеродом; 2 – сравнительный анализ различных участков поверхности сферулы в двух независимых лабораториях (№1 и 3); 3 – приготовление прозрачно-полированного шлифа через центр сферулы и микрозондовое изучение зональности. Ниже излагаются результаты первого этапа запланированных работ.

3. МЕТОДИКА РАБОТ. 3.1. Фотографии и описание Царь-сферулы.

ФОТО-1, -2, -3. Фотографии Царь-сферулы, на которых отчетливо видны участочки, обогащенные *углеродистым веществом* (ФОТО-1), *медью* (ФОТО-2) и *железом* (ФОТО-3).

Царь-сферула имеет идеальную сферическую форму, поперечник около 4,6 мм и яркий «медный» цвет. При изучении её под бинокуляром выявляются мелкие неправильной формы участочки с поперечником 100-200 микрон, которые имеют черно-бурый цвет и, скорее всего, обогащены углеродистым материалом (фото-1). Однако это участочки занимают всего лишь 5-10% поверхности сферулы, в то время как резко преобладают ареалы ярко-медной поверхности (фото-2). Особняком на сферуле смотрится микрокольцевая структура (фото-3), имеющая поперечник около 2мм и представленная 150-250-микронной полоской буро-черной окалины.

Для дальнейших микрозондовых исследований был выбран один из участочков, заметно обогащенных углеродистым веществом (фото-1).

3.2. Микрозондовое исследование Царь-сферулы.

Микрозондовое изучение сферулы проведено 22 апреля 2014 г. на растровом электронном микроскопе Supra 40 VP, Karl Zeiss (Германия) в лаборатории химического факультета С.Петербургского Политехнического университета (<u>http://mnt.ftim.spbstu.ru/index.php/kafedra-</u> segodnya/laboratorii/mikroskopii-i-mikroanaliza) по стандартной методике. На каждой из прилагаемых фотографий приведены необходимые данные.

Фото-01. Царь-сферула - снимок-101 в отраженных электронах (поле зрения – 900х600 микрон). Фото-02. Царь-сферула - снимок-102 во вторичных электронах (поле зрения – 900х600 микрон).

Сравнительный анализ приведенных фотографий показывает всю сложность строения поверхности рассматриваемой Царь-сферулы и позволяет выделить как минимум три ареала поверхности с различным характером текстуры и состава. Для дальнейших исследований выбрана левая нижняя часть снимка-101.

На прилагаемых ниже фото-03 и его фрагменте фото-04 показаны участки Царь-сферулы с максимальным контрастном изображения и с зонками, обогащенными углеродом. Одна из таких зонок была выбрана для более детальных исследований.

Фото-03. Царь-сферула - снимок-103 в отраженных электронах (поле зрения – 450х300 микрон). Фото-04. Царь-сферула - снимок-104 в отраженных электронах (поле зрения – 90х60 микрон).

На фото-04 цифрами 1-2-3-4 отмечены точки, на которых в виде ярких **изометричных** пятен наблюдаются обогащенные металлом фазы, которые нами предположительно интерпретировались как выступы волосовидных образований среди серой-темносерой основной массы. Поперечник этих предполагаемых «волосин» составляет 2-3 микрона. Отмеченные точки рассматриваются нами как геологические объекты 1-группы.

На фото-05 (снимок-105) цифрами 5-6-7-8 отмечены точки, на которых в виде ярких **неправильной формы** пятен наблюдаются обогащенные металлом фазы, которые нами предположительно интерпретировались как выступы второго типа волосовидных образований среди серой-темносерой основной массы. Поперечник этих предполагаемых «волосин» также составляет 2-3 микрона. Отмеченные точки рассматриваются нами как геологические объекты 2-группы.

Фото-05. Царь-сферула - снимок-105 в отраженных электронах (поле зрения – 90х60 микрон).

На фото-06 (снимок-106) представлен фрагмент, расположенный в правом верхнем углу снимка-105. Это – наиболее удачная горизонтальная площадка для микрозондового анализа основной массы Царь-сферулы на участке развития высокоуглеродистых образований. Размер её – 8х3 микрона (точка 10). Кроме того, здесь же выполнен анализ (точка-9) для яркого пятна, внешне напоминающего объекты второй геологической группы. Для дальнейшего сравнительного изучения приняты следующие номера геологических совокупностей: *ГЛС-1* = точки 1-4; *ГЛС-2* = точки 5-8; *ГЛС-3* = точка 9; *ГЛС-4* = точка 10. На фото-06 показано ещё несколько точек: совокупность *ГЛС-5* (точки 11-12 предположительно существенно медного состава), *ГЛС-6* (точка 13 – яркое металлическое включение в ГЛС-5) и *ГЛС-7* (точка 14 – черная основная масса ниже номера 106).

Фото-06. Царь-сферула - снимок-106 в отраженных электронах (поле зрения – 90х60 микрон).

На фото-07 (снимок-107), которое является фрагментом центральной части снимка-101, показаны ещё 2 точки микрозондового анализа. Предполагается, что точка 15 отвечает ГЛС-4, а точка 16 отвечает ГЛС-5.

Фото-07. Царь-сферула - снимок-107 в отраженных электронах (поле зрения – 210х140 микрон).

Результаты микрозондовых анализов и предварительные результаты их обработки приведены в таблицах 1, 2 и 3.

Таблица 1. Результаты микрозондового анализа Царь-сферулы для 16 точек, отображенных на снимках 104-107.

Точка	С	0	CO	Na	Mg	ΑΙ	Si	Ρ	S	CI	K	Са	Ti	Cr	Mn	Fe	Cu	Zn	ГЛС
1	+	4567	4567	55		35	54	11	20	83	65	38			15	3985	903	169	1
2	+	4431	4431	93		22	50	12	47	60	46	53		7		1227	3952		1
3	+	1744	1744	160		25	47	9	73	91	42	30		13		1000	6769		1
4	+	3280	3280			20	49		8	18	13	9			18	5963	282	340	1
5	+	2190	2190				54	8	105	60	29	24				1454	6075		2
6	+	4733	4733	182		42	117	21	35	122	75	112		6	8	3490	1015	41	2
7	+	7751	7751	18		8	19	3	3	15	15	16		5	7	1526	594	23	2
8	+	3852	3852	123		43	94	12	58	55	44	65		17		1061	4578		2
9	5798	800	6598	161	11	17	41	5	44	190	94	66		6		2019	721	26	4
10	5499	1684	7183	255	14	138	345	9	48	244	115	123				1045	459	21	3
11	0	0	0													521	9479		5
12	0	0	0													603	9397		5
13	872	246	1118				22		8	14	10	12		13		426	8377		6
14	7799	754	8553	16		12	28	2	8	18	27	18	18			1148	152	20	7
15	+	4371	4371	72		37	55			44	35	28				5311	47		4
16	0	0	0						24							2798	7177		5

Примечание. Содержания элементов даны в масс. % и для удобства работы увеличены в 100 раз. Знак (+) у углерода указывает на его присутствие ниже уровня содержания кислорода. Знак (0) – отсутствие элемента. Пустая клетка – содержание элемента ниже порога чувствительности, равного 0,01%.

Таблица 2. Результаты микрозондового анализа Царь-сферулы, подготовленные для статистической обработки.

	Cnew	Onew	CO	Na	ΑΙ	Si	Ρ	S	CI	K	Ca	Cr	Mn	Fe	Cu	Zn	ГЛС					
1	1522	3045	4567	55	35	54	11	20	83	65	38	1	15	3985	903	169	1					
2	1477	2954	4431	93	22	50	12	47	60	46	53	7	1	1227	3952	1	1					
3	581	1163	1744	160	25	47	9	73	91	42	30	13	1	1000	6769	1	1					
4	1093	2187	3280	1	20	49	1	8	18	13	9	1	18	5963	282	340	1					
5	730	1460	2190	1	1	54	8	105	60	29	24	1	1	1454	6075	1	2					
6	1578	3155	4733	182	42	117	21	35	122	75	112	6	8	3490	1015	41	2					
7	2584	5167	7751	18	8	19	3	3	15	15	16	5	7	1526	594	23	2					
8	1284	2568	3852	123	43	94	12	58	55	44	65	17	1	1061	4578	1	2					
9	5798	800	6598	161	17	41	5	44	190	94	66	6	1	2019	721	26	4					
10	5499	1684	7183	255	138	345	9	48	244	115	123	1	1	1045	459	21	3					
11	0	0	0	0	0	0	0	0	0	0	0	0	0	521	9479	0	5					
12	0	0	0	0	0	0	0	0	0	0	0	0	0	603	9397	0	5					
13	872	246	1118	1	1	22	1	8	14	10	12	13	1	426	8377	1	6					
14	7799	754	8553	16	12	28	2	8	18	27	18	1	1	1148	152	20	7					
15	1457	2914	4371	72	37	55	1	1	44	35	28	1	1	5311	47	1	4					
16	0	0	0	1	1	1	1	24	1	1	1	1	1	2798	7177	1	5					

Примечание. Содержания элементов даны в масс. % и для удобства работы увеличены в 100 раз. Знак (0) – отсутствие элемента. Знак (1) – нижний порог чувствительности (0,01%). Параметры Спеw и Опеw рассчитаны для проб, в которых содержание О больше С, исходя из отношения C:O=1:2.

Таблица 3. Результаты корреляционного анализа результатов микрозондового изучения Царь-сферулы.

NN	<mark>Признак</mark>	<mark>Среднее</mark>	Ст-откл	Cnew	Onew	CO	Na	AI	Si	Ρ	S	CI	K	Ca	Cr	Mn	Fe	Cu	Zn
1	Cnew	<mark>2017,13</mark>	2307,11		<mark>0,05</mark>	<mark>0,85</mark>	<mark>0,38</mark>	<mark>0,39</mark>	<mark>0,39</mark>	<mark>0,03</mark>	-0,02	<mark>0,51</mark>	<mark>0,55</mark>	<mark>0,41</mark>	<mark>-0,12</mark>	<mark>-0,10</mark>	-0,11	<mark>-0,64</mark>	<mark>-0,04</mark>
2	<mark>Onew</mark>	<mark>1756,06</mark>	1478,02	<mark>0,05</mark>		<mark>0,57</mark>	<mark>0,22</mark>	<mark>0,25</mark>	<mark>0,19</mark>	<mark>0,46</mark>	<mark>0,02</mark>	<mark>0,12</mark>	<mark>0,26</mark>	<mark>0,33</mark>	<mark>0,12</mark>	<mark>0,48</mark>	<mark>0,38</mark>	<mark>-0,64</mark>	<mark>0,23</mark>
3	CO	<mark>3773,19</mark>	2795,85	<mark>0,85</mark>	<mark>0,57</mark>		<mark>0,43</mark>	<mark>0,46</mark>	<mark>0,42</mark>	<mark>0,26</mark>	-0,01	<mark>0,49</mark>	<mark>0,59</mark>	<mark>0,51</mark>	<mark>-0,04</mark>	<mark>0,18</mark>	<mark>0,11</mark>	<mark>-0,87</mark>	0,09
4	Na	<mark>71,19</mark>	82,12	<mark>0,38</mark>	<mark>0,22</mark>	<mark>0,43</mark>		<mark>0,80</mark>	<mark>0,77</mark>	<mark>0,66</mark>	<mark>0,43</mark>	<mark>0,90</mark>	<mark>0,90</mark>	<mark>0,91</mark>	<mark>0,32</mark>	<mark>-0,12</mark>	-0,05	<mark>-0,39</mark>	<mark>-0,16</mark>
5		<mark>25,13</mark>	33,82	<mark>0,39</mark>	<mark>0,25</mark>	<mark>0,46</mark>	0,80		0,97	<mark>0,43</mark>	<mark>0,21</mark>	<mark>0,78</mark>	<mark>0,78</mark>	<mark>0,81</mark>	0,00	<mark>0,04</mark>	<mark>0,07</mark>	<mark>-0,47</mark>	0,05
6	Si	<mark>61,00</mark>	82,18	<mark>0,39</mark>	<mark>0,19</mark>	<mark>0,42</mark>	<mark>0,77</mark>	0,97		<mark>0,45</mark>	<mark>0,32</mark>	<mark>0,79</mark>	<mark>0,76</mark>	<mark>0,83</mark>	-0,01	<mark>-0,01</mark>	<mark>-0,02</mark>	<mark>-0,40</mark>	0,01
7	P	<mark>6,00</mark>	6,01	<mark>0,03</mark>	<mark>0,46</mark>	<mark>0,26</mark>	<mark>0,66</mark>	<mark>0,43</mark>	<mark>0,45</mark>		<mark>0,56</mark>	<mark>0,53</mark>	<mark>0,64</mark>	<mark>0,78</mark>	<mark>0,37</mark>	<mark>0,17</mark>	<mark>0,03</mark>	<mark>-0,28</mark>	<mark>-0,04</mark>
8	S	<mark>30,13</mark>	30,60	<mark>-0,02</mark>	<mark>0,02</mark>	<mark>-0,01</mark>	<mark>0,43</mark>	<mark>0,21</mark>	<mark>0,32</mark>	<mark>0,56</mark>		<mark>0,46</mark>	<mark>0,41</mark>	<mark>0,40</mark>	<mark>0,34</mark>	<mark>-0,23</mark>	-0,24	<mark>0,08</mark>	-0,22
9	CI	<mark>63,44</mark>	70,49	<mark>0,51</mark>	<mark>0,12</mark>	<mark>0,49</mark>	0,90	<mark>0,78</mark>	<mark>0,79</mark>	<mark>0,53</mark>	<mark>0,46</mark>		<mark>0,97</mark>	<mark>0,87</mark>	<mark>0,08</mark>	<mark>-0,04</mark>	-0,02	<mark>-0,45</mark>	-0,05
10	K	<mark>38,19</mark>	34,34	<mark>0,55</mark>	<mark>0,26</mark>	<mark>0,59</mark>	0,90	<mark>0,78</mark>	<mark>0,76</mark>	<mark>0,64</mark>	<mark>0,41</mark>	<mark>0,97</mark>		<mark>0,91</mark>	<mark>0,11</mark>	<mark>0,05</mark>	<mark>0,07</mark>	<mark>-0,58</mark>	<mark>-0,01</mark>
11	Ca	<mark>37,19</mark>	37,81	<mark>0,41</mark>	<mark>0,33</mark>	<mark>0,51</mark>	<mark>0,91</mark>	<mark>0,81</mark>	<mark>0,83</mark>	<mark>0,78</mark>	<mark>0,40</mark>	<mark>0,87</mark>	<mark>0,91</mark>		<mark>0,22</mark>	<mark>0,00</mark>	<mark>0,01</mark>	<mark>-0,49</mark>	-0,09
12	Cr	<mark>4,63</mark>	5,40	<mark>-0,12</mark>	<mark>0,12</mark>	<mark>-0,04</mark>	<mark>0,32</mark>	0,00	-0,01	<mark>0,37</mark>	<mark>0,34</mark>	<mark>0,08</mark>	<mark>0,11</mark>	<mark>0,22</mark>		<mark>-0,20</mark>	<mark>-0,34</mark>	<mark>0,18</mark>	<mark>-0,26</mark>
13	<mark>Mn</mark>	<mark>3,63</mark>	5,55	<mark>-0,10</mark>	<mark>0,48</mark>	<mark>0,18</mark>	<mark>-0,12</mark>	<mark>0,04</mark>	-0,01	<mark>0,17</mark>	<mark>-0,23</mark>	<mark>-0,04</mark>	<mark>0,05</mark>	0,00	<mark>-0,20</mark>		<mark>0,71</mark>	<mark>-0,49</mark>	0,92
14	Fe	<mark>2098,56</mark>	1723,69	<mark>-0,11</mark>	<mark>0,38</mark>	<mark>0,11</mark>	<mark>-0,05</mark>	<mark>0,07</mark>	<mark>-0,02</mark>	<mark>0,03</mark>	<mark>-0,24</mark>	<mark>-0,02</mark>	<mark>0,07</mark>	<mark>0,01</mark>	<mark>-0,34</mark>	<mark>0,71</mark>		<mark>-0,58</mark>	<mark>0,70</mark>
15	Cu	<mark>3748,56</mark>	3627,18	<mark>-0,64</mark>	<mark>-0,64</mark>	<mark>-0,87</mark>	<mark>-0,39</mark>	-0,47	<mark>-0,40</mark>	<mark>-0,28</mark>	<mark>0,08</mark>	<mark>-0,45</mark>	-0,58	<mark>-0,49</mark>	<mark>0,18</mark>	<mark>-0,49</mark>	-0,58		<mark>-0,42</mark>
16	Zn	<mark>40,44</mark>	90,09	-0,04	<mark>0,23</mark>	0,09	<mark>-0,16</mark>	<mark>0,05</mark>	0,01	-0,04	-0,22	-0,05	-0,01	-0,09	<mark>-0,26</mark>	0,92	<mark>0,70</mark>	-0,42	

Примечание. В таблице приведены статистические параметры, рассчитанные исходя из нормального закона распределения. В корреляционной матрице голубым цветом замаркированы статистические величины, незначимые при 5%-уровне. Статистически значимые отрицательные коэффициенты корреляции выделены синим цветом, а положительные – розовым и красным (для значений более 0,8).

3.3. Статистическая обработка данных и их интерпретация.

Полученные результаты (табл.1-3) сразу же обратили наше внимание своей нестандартностью. Это и необычный набор химических элементов, и четкое разделение на главные и второстепенные элементы, и очень высокие статистически значимые коэффициенты корреляции, и нестандартные ассоциации химических элементов. В этой связи была предпринята попытка разработать геохимическую классификацию элементов, обнаруженных в Царьсферуле, увязать её с предварительным разделением проб на геологические совокупности и обосновать возможность использования методов факторного анализа для решения поставленных задач.

Факторный анализ. Методом главных компонентов выявлены два ведущих фактора с нагрузками 44 и 22%. Первый из них фиксирует антагонизм алюмо-силикатной ассоциации элементов по отношению к Си и Fe, а второй фактор – антагонизм Си по отношению к Fe (Фиг.8-а). На диаграмме значений факторов (Фиг.8-б) отчетливо выделяются 4 геохимические совокупности точек анализов: 1 = существенно медная (т.н. *11*-12-13-16); 2 = пестрая по составу (т.н. *2*-3-5-7-8-9-14-15); 3 = алюмо-силикатная (т.н. *6*-*10*); 4 = существенно железистая (1-*4*).

Фиг. 8. Диаграммы факторных нагрузок (слева) и значений факторов (справа) для анализов Царь-сферулы.

Эти данные однозначно свидетельствуют о том, что предварительная геологическая классификация точек анализов сферулы не в полной мере отражает сложные геохимические закономерности. Вполне естественно встает вопрос о статистической значимости различий между 4 выделенными геохимическими совокупностями.

Таблица 4.

Результаты попарного геохимического сравнения 4 геохимических совокупностей анализов Царь-сферулы.

<mark>Признак</mark>	<mark>Гхс1</mark>	<mark>Гхс2</mark>	<mark>Гхс3</mark>	<mark>Гхс4</mark>	<mark>P=1-2</mark>	<mark>P=1-3</mark>	<mark>P=1-4</mark>	<mark>P=2-3</mark>	<mark>P=2-4</mark>	<mark>P=3-4</mark>
<mark>CO</mark>	<mark>280</mark>	4936	<mark>5958</mark>	3924	<u>0,005</u>	<u>0,003</u>	<u>0,003</u>	0,606	0,600	0,279
<mark>Сизм</mark>	<mark>218</mark>	2714	<mark>3539</mark>	1308	0,097	0,056	<mark>0,037</mark>	0,705	0,493	0,375
<mark>Оизм</mark>	<mark>62</mark>	2223	2420	2616	<mark>0,018</mark>	<u>0,007</u>	0,001	0,868	0,734	0,839
<mark>Na</mark>	1	81	<mark>219</mark>	28	<mark>0,036</mark>	<u>0,001</u>	0,172	<mark>0,024</mark>	0,315	0,052
AI	1	21	<mark>90</mark>	28	<mark>0,020</mark>	<mark>0,038</mark>	0,004	<mark>0,013</mark>	0,548	0,327
<mark>Si</mark>	6	49	<mark>231</mark>	52	0,005	<mark>0,033</mark>	<u>0,005</u>	0,005	0,861	0,256
P	1	7	<mark>15</mark>	6	<mark>0,024</mark>	<mark>0,017</mark>	0,150	0,067	0,898	0,368
S	8	42	42	14	0,106	<mark>0,023</mark>	0,552	0,975	0,331	0,090
CI	4	67	<mark>183</mark>	51	0,052	<u>0,009</u>	0,085	<mark>0,040</mark>	0,718	0,195
K	<mark>3</mark>	42	<mark>95</mark>	39	0,010	<u>0,002</u>	0,091	<mark>0,023</mark>	0,905	0,230
Ca	<mark>3</mark>	38	<mark>118</mark>	24	0,010	<u>0,000</u>	0,110	0,001	0,415	<mark>0,026</mark>
<mark>Cr</mark>	4	6	4	1	0,456	1,000	0,627	0,540	0,255	0,423
<mark>Mn</mark>	1	2	5	<mark>17</mark>	0,284	0,141	<mark>0,000</mark>	0,225	0,000	0,088
<mark>Fe</mark>	1087	1843	2268	<mark>4974</mark>	0,384	0,358	<mark>0,021</mark>	0,726	<mark>0,025</mark>	0,227
<mark>Cu</mark>	<mark>8608</mark>	2861	737	<mark>593</mark>	0,003	0,001	0,001	0,335	0,305	0,762
<mark>Zn</mark>	1	9	31	<mark>255</mark>	0,169	0,008	0,008	<u>0,049</u>	0,000	0,122

Примечание. Геохимические совокупности представлены пробами №11,12,13,16 (**Гхс-1**); -2,3,5,7,8,9,14,15 (**Гхс-2**); -6,10 (**Гхс-3**); -1,4 (**Гхс-4**). Средние значения содержаний увеличены в 100-раз. Малиновый цвет – максимальные значения средних; голубой – минимальные. Вероятность ошибки попарного сравнения совокупностей составляет более 5% (не маркировано), 1-5% (розовый маркер) и менее 1% (красный маркер). Попарное сравнение микровыборок геохимических совокупностей показало (табл. 4), что выделяемые по критерию Стьюдента совокупности имеют отчетливую специализацию на различные химические элементы: $\Gamma xc-1 =$ обогащенность медью и низкие содержания всех остальных элементов; $\Gamma xc-3$ обогащена CO, Na, Al, Si, P, Cl, K, Ca; $\Gamma xc-4$ специализирована на Fe, Mn, Zn. Совокупность $\Gamma xc-2$ занимает промежуточное положение и характеризуется близким к среднему уровню накопления элементов.

3.4. ГУГЛ-поиск природных аналогов Царь-сферулы. Нами была предпринята несколько формальная попытка возможной генетической интерпретации геохимических данных о составе Царь-сферулы на основе частот встречаемости ключевых слов в результатах серии последовательных ГУГЛ-запросов. В конечном счете нам удалось наметить цепочку из 4 последовательных запросов: 1 - микросферулы (microspherules) с Fe, Cu, Zn, Mn, Cr; 2 - химические элементы – Fe, Cu, Zn, Mn, Cr; 3 - классификация химических элементов человеческого тела (classification of chemical elements in the human body); 4 - микроэлементы иммунной системы человека (micronutrients the human immune system). При ГУГЛ-поиске микросферул определенного состава в первой десятке поисковых результатов оказались ключевые слова (micrometeorites, cosmic dust, sediments, coal deposits), свидетельствующие как о возможном космическом происхождении Царь-сферулы, так и об осадочном, коровом генезисе. Однако если перейти к нейтральному термину (chemical elements), то список ключевых слов заметно изменится (sediments, analysis, iron-peak, essential micronutrients, bioinorganic chemistry, medical geology) в сторону биогеохимии человека. Третий ГУГЛ-запрос позволил получить информацию о биогеохимической классификации элементов человеческого тела и в конечном итоге (четвертый запрос) высказать предположение, что специфика химического состава Царь-сферулы может быть проинтерпретирована (как один из возможных вариантов) как отдаленный аналог иммунной системы человека. Более подробно этот вопрос обсуждается ниже.

4. РЕЗУЛЬТАТЫ РАБОТ.

4.1. Сравнительный анализ геологической и геохимической моделей Царь-сферулы. Приведенные в методическом разделе данные (табл. 1-4; фиг. 8) свидетельствуют о том, что геолого-морфологическая классификация точек наблюдений заметно уступает геохимической модели, построенной на формальной основе (совокупности Гхс-1, 2, 3, 4 в табл. 4). Учитывая небольшой объем точек наблюдений и необходимость получения статистически надежных выводов, был предложен вариант совместного изучения химических элементов и их ассоциаций (см. табл. 5).

Таблица 5. Геохимические данные по Царь-сферуле, упорядоченные по Ассоциациям Химических Элементов .

	<mark>ФакГхСов</mark>	<mark>Точка</mark>	<mark>Cu</mark>	Cr	S	P	NaAlSiClKCa	CO	FeMnZn	
1	<mark>1</mark>	<mark>11</mark>	<mark>9479</mark>	0	0	0	0	0	<mark>521</mark>	
2	<mark>1</mark>	<mark>12</mark>	<mark>9397</mark>	0	0	0	0	0	603	
3	<mark>1</mark>	<mark>16</mark>	7177	1	24	1	<mark>6</mark>	0	2800	
4	<mark>1</mark>	<mark>13</mark>	<mark>8377</mark>	13	8	1	60	1118	428	
5	<mark>2</mark>	<mark>3</mark>	6769	13	<mark>73</mark>	9	395	1744	1002	
6	<mark>2</mark>	<mark>5</mark>	6075	1	<mark>105</mark>	8	169	2190	1456	
7	<mark>2</mark>	<mark>8</mark>	4578	17	<mark>58</mark>	<mark>12</mark>	<mark>424</mark>	3852	1063	
8	<mark>2</mark>	2	3952	7	<mark>47</mark>	<mark>12</mark>	324	4431	1229	
9	<mark>3</mark>	<mark>6</mark>	1015	6	<mark>35</mark>	<mark>21</mark>	<mark>650</mark>	4733	3539	
10	<mark>3</mark>	<mark>9</mark>	721	6	<mark>44</mark>	5	<mark>569</mark>	<mark>6598</mark>	2046	
11	<mark>3</mark>	<mark>10</mark>	459	1	<mark>48</mark>	9	1220	<mark>7183</mark>	1067	
12	<mark>4</mark>	7	<mark>594</mark>	5	3	3	91	7751	1556	
13	<mark>4</mark>	<mark>14</mark>	<mark>152</mark>	1	8	2	119	<mark>8553</mark>	1169	
14	<mark>4</mark>	<mark>1</mark>	903	1	20	<mark>11</mark>	330	4567	<mark>4169</mark>	
15	<mark>4</mark>	4	<mark>282</mark>	1	8	1	110	3280	<mark>6321</mark>	
16	<mark>4</mark>	<mark>15</mark>	<mark>47</mark>	1	1	1	271	4371	5313	

В таблице химические элементы и их ассоциации упорядочены по 1 и 2 факторам. Аналогичным образом упорядочены точки наблюдений, которые сгруппированы в 4 совокупности (ФакГхСов). Красным цветом показаны повышенные значения параметров, а голубым - пониженные. Обоснованность разделения 16 точек на 4 группы подтверждается результатами анализа данных табл. 5 методом главных компонентов факторного анализа (фиг. 9). Веса факторов: 1 = 35%; 2 = 26%.

Фиг. 9. Диаграммы факторных нагрузок (слева) и значений факторов (справа) для анализов Царь-сферулы.

Таблица 6. Результаты попарного сравнения 4 факторных совокупностей анализов Царь-сферулы.

Сравнение таблиц 4 и 6 показывает преимущество окончательной классификации (см. табл.5). Стр. 17.

4.2. Ассоциации химических элементов (AXЭ). Если к прилагаемому списку химических элементов и их ассоциаций добавить водород (присутствие его здесь не вызывает сомнений), то можно говорить о следующих типах АХЭ в Царь-сферуле : 1 = Cu+H; 2 = Cr+S+H; 3 = P+Cl+NaAlSiKCa+C+H+OH; 4 = OH+MnFeZn+O. Этот список однозначно указывает на закономерную смену восстановительных условий образований существенно медной Царь-сферулы на окислительные условия, при заметной роли железа и элементов-коррелянтов (Mn, Zn). Тем самым появляется еще одно косвенное подтверждение аналогичных процессов, ранее наблюдавшихся для существенно железистых микросферул (http://www.hodka.net/sk32.pdf).

4.3. Главнейший биогеохимический тренд. Приведенные выше данные (разделы 4.1 и 4.2) свидетельствуют о сложной картине изменений содержаний химических элементов и их ассоциаций в изучаемой Царь-сферуле. На данном этапе исследований представляется возможным в сугубо предположительной форме развивать биогеохимическую модель образования Царь-сферулы. В основе модели лежит надежно установленный факт, что во всех фациях челябинскитов (сферулы, расплавные и пепловые фации) четко проявлена закономерная смена восстановительных условий на окислительные. Аналогичная закономерность выражена и в смене АХЭ (раздел 4.2). Тем самым появляется возможность в главном биогеохимическом тренде Царь-сферулы наметить две параллельно эволюционирующие ветви: 1 = водород – сероводород – углеводороды (с фосфором, хлором, гидроксилами) – гидроксилы – кислород; 2 = Cu – Cr - NaAlSiKCa – MnFeZn. В этой связи представляется возможным высказать предположение, что в биогеохимическом тренде Царь-сферулы химические элементы присутствуют в виде элементоорганических соединений.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

5.1. УФО-геологическая модель образования челябинскитовой Царь-сферулы. Если базироваться на изложенных выше данных и не отвергать ранее опубликованные наши материалы о челябинскитах (http://www.hodka.net/sk32.pdf), то можно в качестве гипотезы для дальнейшей дискуссии предложить УФОгеологическую модель. Это значит, что изучаемая Царь-сферула рассматривается нами как остаток крупного НЛОплазмоида, погибшего 15 февраля 2013 г. во время падения Челябинского метеорита. Отметим, что в отличие от многочисленных мелких челябинскитовых сферул существенно железистого состава, она выделяется богатейшим списком элементов и должна рассматриваться как реликт РАЗУМНОГО плазмоида, прошедшего длительную эволюцию. Более того, нами не исключается генетически-наследственная связь между химическим составом Царьсферулы, медицинской геологией и иммунной системой Человека. Но это – тема для более обстоятельной дискуссии. 5.2. Сравнительный геохимический анализ Царь-сферулы, Земной коры, биологических объектов и человека.

Представляется целесообразным напомнить читателю об основных положениях бионеорганической химии, с акцентом на микроэлементный состав органов **Человека** (мне казался бы более удачным термин «биогеохимия Человека»).

Фиг. 10. Характер распределения химических элементов в человеческом теле, земной коре, морской воде (А) и средние содержания главнейших элементов в человеческом теле (Б). По материалам Википедии.

Принципиальные различия химического состава земной коры, морской воды и человеческого тела (Фиг. 10-А) достаточно очевидны. Представляется весьма важным обратить внимание на тот факт, что все главнейшие элементы человеческого тела (Фиг. 10 –Б) присутствуют и в Царь-сферуле (за исключением водорода и азота, что объясняется возможностями микрозондового анализа). Аналогичная ситуация сохраняется и с микроэлементами. Царь-сферула специализирована на Fe, Cu, Zn и другие металлы, а также обогащена неметаллическими соединениями.

Фиг.11. Периодическая таблица Менделеева (А) и её варианты, широко используемые в биологии (Б), при изучении высших растений (В) и в диетологии (Г).

По материалам Интернета: <u>http://sciencevideos.files.wordpress.com/2010/05/bioptable2_1.png?w=604&h=398 (Б),</u> <u>http://soils.wisc.edu/facstaff/barak/soilscience326/listofel.htm</u> (B), <u>http://en.wikipedia.org/wiki/Dietary_element</u> (Г).

Сравнительный анализ многочисленных обобщающих работ по минеральному составу живого вещества (Фиг. 11) позволяет сделать вывод, что Царь-сферула является СУПЕР-концентратором широкого спектра химических элементов (Na-Mg-Si-P-S-Cl-K-Ca-Mn-Fe-Cu-Zn), которые известны как essential mineral elements (<u>http://soils.wisc.edu/facstaff/barak/soilscience326/listofel.htm</u>). Наивысшим выражением этого сходства является элементный состав иммунной системы Человека.

5.3. *О* возможных аналогах челябинскитовой Царь-сферулы. В связи с предположением о биогеохимическом генезисе сферулы нами была предпринята попытка решения обратной задачи – организовать ГУГЛ-поиск микросферул, по химизму приближающихся к Царь-сферуле. Наибольший интерес представляют данные по цивилизации Кловис (<u>http://en.wikipedia.org/wiki/Younger_Dryas</u> - Фиг.12), которая погибла около 12900 лет назад. Документальные подтверждения этой катастрофы обнаружены в Северной Америке, Западной Европе, и, предположительно в это же время, на р. Волхов и в районе падения Тунгусского космического тела.

Фиг.12. Материалы по микросферулам the Younger Dryas Boundary (YDB). А=схема размещения YDB; Б= микросферулы, США; В=микросферулы-волховиты; Г=микросферулы из района падения Тунгусского КТ. *Составлено по материалам: <u>http://phys.org/news/2013-05-comprehensive-analysis-impact-spherules-theory.html</u> (A), <u>http://www.pnas.org/content/110/38/E3557.full</u> (Б), <u>http://www.hodka.net/labazskub.php</u> (B,Г).*

В первые годы изучения феномена господствовала кометная гипотеза (А), однако в последнее время предпочтение отдается земному источнику вещества (Б); в наших работах развивается крипто-вулканическая модель феномена (В,Г). Археологи также отрицают кометную гипотезу (<u>http://www.sciencenewsline.com/articles/2014051315440013.html</u>). Палеонтологи (<u>http://www.bioone.org/doi/abs/10.4202/app.2011.0058</u>) обращают внимание на широкий разброс содержаний элементов в сферулах YDB. Это свидетедьствует о возможности находок здесь аналогов Царь-сферулы.

Анализ материалов по микросферулам более *древних катастроф* (Racki, G. 2012. The Alvarez impact theory of mass extinction; limits to its applicability and the "great expectations syndrome". Acta Palaeontologica Polonica 57 (4): 681–702.) показывает, что среди наиболее распространенных железистых и силикатных микросферул нередко встречаются необычные образования (**фиг. 13**), что допускает возможность обнаружения среди них аналогов Царь-сферулы.

Фиг.12. Материалы по палеозойско-мезозойским микросферулам.

A = силикатно-железистые сферулы мел-палеогеновой границы, США (<u>http://www.rhyniechert.com/ktboundary.html</u>); Б = позднетриасовые янтарные капли из Доломитовых Альп (<u>http://www.ineffableisland.com/2012/08/oldest-insects-ever-found-in-amber-230.html</u>); В = глауконитовые микросферулы Бристольского слоя в Англии (<u>http://www.tektites.co.uk/bristol-impact-layer.html</u>); Γ = девонские углеродисто-фосфатные микросферулы Южного Китая (<u>http://link.springer.com/article/10.1007%2Fs11430-014-4847-y</u>).

В этой связи дополнительного обсуждения требуют вопросы классификации микросферул. Имеющаяся генетическая классификация (oolites, micrometeorites, impact spherulites, iberulites, pisolites, aerolites, chondrules, biolites, pellets, bubbles, or carbonaceous microspherules - <u>http://en.wikipedia.org/wiki/Microspherulite</u>) заслуживает большего внимания. Особый интерес представляют материалы сайта Джона Ларсена (<u>https://www.facebook.com/micrometeorites?fref=ts</u>). Таким образом, мы не исключаем возможности обнаружения аналогов Царь-сферулы среди многочисленных разновозрастных проявлений микрометеоритов, микротектитов и микросферул. В основе нашего подхода лежит тезис: импактная, криптовулканическая и биологическая модели образования микросферул должны быть дополнены уфогеологической моделью.

Наиболее интересные результаты при ГУГЛ-поиске получены по серии запросов типа *«microspherules Cu Fe Zn».* Установлено, что наибольшее разнообразие микросферул, обломков металлов, сплавов, углеродистых образований, наноалмазов, иридия и др. установлены А.Ф. Грачевым и др. в Австрии (*фиг.13*), а также О.А.Корчагиным и др. в Дании (*http://bourabai.kz/tselmowich/particles.htm*) и Г.Т. Скубловым на правобережье р. Волхов, в районе г. Кириши, где обнаружены волховиты, их шлаки, киришиты, золото-медные сферулы и др. (*http://www.hodka.net/labazskub.php*).

Фиг.13. Материалы по микрочастицам из пограничного К-Т-горизонта в Восточных Альпах.

Составлено по данным А.Ф.Грачева (The K/T Boundary of Gams (Eastern Alps, Austria) and the Nature of Terminal Cretaceous Mass Extinction. 2009). A - агрегаты микросферул никеля с микрокристаллами алмаза; Б - пластинки самородного железа и его сплавов (Fe-Ni; Ni-Fe-Mo); В - скелетные кристаллы и микрочастицы самородного золота и меди; Г - крупное зерно корунда смикросферулой железа; Д - микросферулы железа, никеля и сросток с микроалмазами.

По мнению А.Ф.Грачева (<u>http://www.landesmuseum.at/pdf_frei_remote/BerichteGeolBundesanstalt_78_0016.pdf</u>), эти данные свидетельствуют о существенной роли вулканических аэрозолей при анаэробном образовании интерметаллических соединений и о заметном влиянии космического тела, упавшего спустя 500-800 лет после начала катастрофных процессов. С нашей точки зрения, нужны дополнительные доказательства реальности космического фактора. Более того, мы не исключаем, что именно в этих отложениях удастся найти микросферулы, аналогичные челябинскитовой Царь-сферуле. Таким образом, назрела необходимость разработки надежных критериев разделения микросферул, микрометеоритов и сопутствующих микрочастиц на несколько генетических типов, связанных с метеоритами, импактитами, криптовулканизмом, биогенезом и уфо-геологической деятельностью.

6. ЗАКЛЮЧЕНИЕ.

Сформулируем основные результаты проведенного исследования.

1. Челябинскиты – новый тип природных образований, представленных микросферулами, пепловыми фациями и расплавными образованиями. Они сформировались 15 февраля 2013 г. в течение 30-50 секунд во время падения и вспышки Челябинского метеорита. Челябинскитовые микросферулы имеют размер 50-700 микрон, выделяются полиэлементным силикатно-железистым составом и характеризуются широким развитием высокоуглеродистых образований заключительной стадии развития. Высказано предположение, что они являются реликтами литосферных НЛО-плазмоидов, участвовавших в судьбе Челябинского метеорита.

2. Наиболее крупная челябинскитовая сферула размером 4,6 мм (**Царь-сферула**) характеризуются неоднородной поверхностью. На фоне существенно медной поверхности выделяются участки, обогащенные углеродом и железом. На первом этапе исследований с помощью микрозондового анализа изучен участок с высоким содержанием углерода.

3. По результатам анализа в 16 точках определен средний состав этого участка Царь-сферулы, в масс.%: Cu – 37,48; Fe – 20,98; C – 20,17; O – 17,56; Na – 0,71; Cl – 0,63; Si – 0,61; K – 0,38; Ca – 0,37; S – 0,30; Al – 0,25; P – 0,06; Cr – 0,04; Mn – 0,03.

4. Корреляционным анализом выделены ассоциации химических элементов Царь-сферулы и установлен главный геохимический тренд; намечены две параллельно эволюционирующие ветви: 1 = водород – сероводород – углеводороды (с фосфором, хлором, гидроксилами) – гидроксилы – кислород; 2 = Cu – Cr - NaAlSiKCa – MnFeZn.

5. Все пробы с помощью МГК-ФА разделены на 4 совокупности (см. таблицу - средние увеличены в 100 раз).

<mark>Параметр</mark>	<mark>срд=1</mark>	<mark>срд=2</mark>	<mark>срд=3</mark>	<mark>срд=4</mark>	p=1-2	<mark>p-1-3</mark>	<mark>p=1-4</mark>	p-=2-3	<mark>p=2-4</mark>	<mark>p=3-4</mark>
Cu	<mark>8608</mark>	5344	732	<mark>396</mark>	0,0083	<mark>0,0001</mark>	<u>0,0000</u>	0,0020	<u>0,0001</u>	0,2101
Cr	4	10	4	2	0,2512	0,8435	0,5803	0,2902	<mark>0,0473</mark>	0,1685
S	8	71	42	8	0,0039	0,0057	1,0000	0,1214	0,0010	0,0006
P	1	10	12	4	0,0001	<mark>0,0395</mark>	0,1933	0,7498	<mark>0,0242</mark>	0,1110
NaAlSiCIKCa	<mark>17</mark>	328	<mark>813</mark>	184	0,0018	0,0057	<mark>0,0210</mark>	<mark>0,0463</mark>	0,0947	0,0084
CO	<mark>280</mark>	3054	<mark>6171</mark>	5704	0,0076	<mark>0,0004</mark>	<u>0,0027</u>	<mark>0,0247</mark>	0,0807	0,7625
FeMnZn	<u>1088</u>	1188	2217	<mark>3706</mark>	0,8696	0,2674	0,0760	0,1539	0,0660	0,3456

6. Сравнительный анализ обобщающих работ по минеральному составу живого вещества позволяет высказать предположение, что Царь-сферула может рассматриваться как *СУПЕР-концентратор* широкого спектра химических элементов (*Na-Mg-Si-P-S-Cl-K-Ca-Mn-Fe-Cu-Zn*), которые известны как *essential mineral elements* (<u>http://soils.wisc.edu/facstaff/barak/soilscience326/listofel.htm</u>). Спектр химических элементов Царь-сферулы близок к спектру элементов иммунной системы Человека.

7. Не исключается возможность обнаружения аналогов Царь-сферулы среди многочисленных разновозрастных проявлений микрометеоритов, микротектитов и микросферул. В основе такого подхода лежит тезис: импактная, криптовулканическая и биологическая модели образования микросферул следует дополнить уфогеологической моделью. Стр. 24.